Exact solutions to nonlinear equations with quadratic nonlinearity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 345083
(http://iopscience.iop.org/0305-4470/34/24/306)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.97
The article was downloaded on 02/06/2010 at 09:07

Please note that terms and conditions apply.

Exact solutions to nonlinear equations with quadratic nonlinearity

Q M Liu
Philadelphia, PA 19111, USA
E-mail: liuqi@msn.com

Received 14 February 2001, in final form 11 April 2001

Abstract

Based on the concepts of the generalized conditional symmetry and of the invariant subspace, a constructive way to derive nonlinear equations with quadratic nonlinearity that admit exact solutions as well as many new examples is presented. This type of solution, found by Galaktionov, describes the blowup phenomena. Examples of exact solutions that do not correspond to the invariant subspace are also presented and explained by the nonlinear generalized conditional symmetries.

PACS numbers: 0545, 0545Y, 0230R

There exist equations with quadratic nonlinearity that admit exact solutions describing the blow-up phenomena. The first one, found by Galaktionov [1], is the following:

$$
\begin{equation*}
u_{t}=u_{x x}+u_{x}^{2}-k^{2} u^{2} \tag{1}
\end{equation*}
$$

which admits the solution
$u=g_{1}(t) \mathrm{e}^{k x}+g_{2}(t) \mathrm{e}^{-k x}+g_{3}(t)$
$g_{1}^{\prime}=k^{2} g_{1}\left(1-2 g_{3}\right) \quad g_{2}^{\prime}=k^{2} g_{2}\left(1-2 g_{3}\right) \quad g_{3}^{\prime}=-k^{2}\left(g_{3}^{2}+4 g_{1} g_{2}\right)$.
Other equations that admit similar exact solutions include [2,3]

$$
\begin{equation*}
u_{t}=u u_{x x}-\frac{3}{4} u_{x}^{2}-\frac{1}{4} k^{2} u^{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{t}=u u_{x x}-\frac{2}{3} u_{x}^{2}+\frac{1}{6} k u u_{x}-\frac{1}{6} k^{2} u^{2} . \tag{4}
\end{equation*}
$$

There are several ways to explain the existence of such exact solutions. One such way is the concept of generalized condition symmetry (GCS) [4]. $\sigma(u)$ is a GCS of the equation $u_{t}=K(u)$, iff

$$
K^{\prime} \sigma-\sigma^{\prime} K=F(u, \sigma) \quad F(u, 0)=0
$$

where $F(u, \sigma)$ is a differentiable function of $u, u_{x}, u_{x x}, \ldots$ and of $\sigma, \sigma_{x}, \sigma_{x x}, \ldots$ For each $\operatorname{GCS} \sigma(u)$, there is a solution of the equation $u_{t}=K(u)$ that also satisfies $\sigma(u)=0$. It is easy
to verify that $\sigma=u_{x x x}-k^{2} u_{x}$ is a GCS of equation (1), and (2) is the solution associated with this GCS. Another way to explain such solutions is the concept of the invariant subspace [2]. A linear space V of differential functions is an invariant subspace of a nonlinear operator K if $K[V] \subseteq V$. If V is an invariant subspace of K, then there exists a $u \in V$ such that $K(u)=0$. It is easy to see that $V=\left\{\mathrm{e}^{k x}, \mathrm{e}^{-k x}, 1\right\}$ is an invariant subspace of $K(u)=-u_{t}+u_{x x}+u_{x}^{2}-k^{2} u^{2}$.

The GCS $\sigma=u_{x x x}-k^{2} u_{x}$ of equation (1), as well as the GCSs of equations (3) and (4), are all linear GCSs. In fact, there is a close relation between the linear GCS and the invariant subspace.

Lemma 1. Φu is a GCS of equation $u_{t}=K[u]$, iff $V=\{u: \Phi u=0\}$ is an invariant subspace of $K[u]$.
Proof. $\left.(\Phi u)^{\prime} K[u]\right|_{\Phi u=0}=\left.\Phi K[u]\right|_{\Phi u=0}=\left.\Phi K[u]\right|_{u \in V}$.
In this paper, we present a constructive way to derive equations with quadratic nonlinearity that admit exact solutions similar to (2).

For convenience, for a set of numbers L, we denote the operator $\Phi_{L}=\Pi_{l \in L}\left(\partial_{x}-l\right)$.
Lemma 2. Suppose L is a set of numbers. If there exist $A, B \subseteq L$ such that $A+B \subseteq L$, then $\Phi_{L} u=0$ is an invariant subspace of $F\left(\partial_{x}\right) u+\left(\Phi_{L-A} u\right)\left(\Phi_{L-B} u\right)$, where F is a polynomial with constant coefficients.
Proposition 1. Suppose L is a set of numbers. If there exist $A, B \subseteq L$ such that $A+B \subseteq L$, then $\Phi_{L} u$ is a GCS of the equation $u_{t}=F\left(\partial_{x}\right) u+\left(\Phi_{L-A} u\right)\left(\Phi_{L-B} u\right)$, where F is a polynomial with constant coefficients.

In the following we show a few examples based on proposition 1.
(1) Let $L=(0, k,-k), \quad A=(0, k), \quad B=(0,-k), \quad F\left(\partial_{x}\right)=\partial_{x}^{2}$, then we know that $\Phi_{L} u=\partial_{x}\left(\partial_{x}-k\right)\left(\partial_{x}+k\right) u=u_{x x x}-k^{2} u_{x}$ is a GCS of the equation

$$
u_{t}=u_{x x}+\left[\left(\partial_{x}-k\right) u\right]\left[\left(\partial_{x}+k\right) u\right]
$$

which is the equation (1).
(2) Let $L=\left(0, k_{1},-k_{1}, k_{2}\right), \quad A=\left(0, k_{1}\right), \quad B=\left(0,-k_{1}\right), \quad F\left(\partial_{x}\right)=0$, then we know that $\Phi_{L} u=u_{x x x x}-k_{2} u_{x x x}-k_{1}^{2} u_{x x}+k_{1}^{2} k_{2} u_{x}$ is a GCS of the equation

$$
u_{t}=u_{x x}^{2}-2 k_{2} u_{x} u_{x x}+\left(-k_{1}^{2}+k_{2}^{2}\right) u_{x}^{2}+2 k_{1}^{2} k_{2} u u_{x}-k_{1}^{2} k_{2}^{2} u^{2} .
$$

The associated solution is
$u=g_{1}(t) \mathrm{e}^{k_{1} x}+g_{2}(t) \mathrm{e}^{-k_{1} x}+g_{3}(t) \mathrm{e}^{k_{2} x}+g_{4}(t) \quad g_{1}^{\prime}=2 k_{1}^{2} k_{2}\left(k_{1}-k_{2}\right) g_{1} g_{4}$
$g_{2}^{\prime}=-2 k_{1}^{2} k_{2}\left(k_{1}+k_{2}\right) g_{2} g_{4} \quad g_{3}^{\prime}=0 \quad g_{4}^{\prime}=4 k_{1}^{2}\left(k_{1}^{2}-k_{2}^{2}\right) g_{1} g_{2}-k_{1}^{2} k_{2}^{2} g_{4}^{2}$.
(3) Let $L=\left(0, k_{1}, k_{2}, k_{1}+k_{2}\right), \quad A=\left(0, k_{1}\right), \quad B=\left(0, k_{2}\right), \quad F\left(\partial_{x}\right)=0$, then we know that $\Phi_{L} u=\partial_{x}\left(\partial_{x}-k_{1}\right)\left(\partial_{x}-k_{2}\right)\left(\partial_{x}-k_{1}-k_{2}\right) u$ is a GCS of the equation

$$
u_{t}=\left[\left(\partial_{x}-k_{1}\right)\left(\partial_{x}-k_{1}-k_{2}\right) u\right]\left[\left(\partial_{x}-k_{2}\right)\left(\partial_{x}-k_{1}-k_{2}\right) u\right] .
$$

(4) Let $L=\left(0, k_{1}, k_{2}, \frac{1}{2} k_{1}\right), \quad A=B=\left(0, \frac{1}{2} k_{1}\right), \quad F\left(\partial_{x}\right)=0$, then we know that $\Phi_{L} u=\partial_{x}\left(\partial_{x}-k_{1}\right)\left(\partial_{x}-k_{2}\right)\left(\partial_{x}-\frac{1}{2} k_{1}\right) u$ is a GCS of the equation

$$
u_{t}=\left[\left(\partial_{x}-k_{1}\right)\left(\partial_{x}-k_{2}\right) u\right]^{2} .
$$

(5) Let $L=\left(0, k, \frac{1}{2} k,-\frac{1}{2} k\right), \quad F\left(\partial_{x}\right)=0$, then $A=\left(0, k, \frac{1}{2} k\right), B=\left(0,-\frac{1}{2} k\right)$, or $A=$ $\left(0, \frac{1}{2} k,-\frac{1}{2} k\right), B=\left(0, \frac{1}{2} k\right)$; therefore we know that $\Phi_{L} u=\partial_{x}\left(\partial_{x}-k\right)\left(\partial_{x}-\frac{1}{2} k\right)\left(\partial_{x}+\frac{1}{2} k\right) u$ is a GCS of the equation
$u_{t}=\left[\left(\partial_{x}+\frac{1}{2} k\right) u\right]\left[\left(\partial_{x}-k\right)\left(\partial_{x}-\frac{1}{2} k\right) u\right]-\left[\left(\partial_{x}-k\right) u\right]\left[\left(\partial_{x}-k\right)\left(\partial_{x}+\frac{1}{2} k\right) u\right]$
which is equation (4).
(6) Let $L=\left(0, k,-k, \frac{1}{2} k\right), F\left(\partial_{x}\right)=0$, then $A=(0, k), B=(0,-k)$, or $A=B=\left(0, \frac{1}{2} k\right)$; therefore we know that $\Phi_{L} u=\partial_{x}\left(\partial_{x}-k\right)\left(\partial_{x}+k\right)\left(\partial_{x}-\frac{1}{2} k\right) u$ is a GCS of the equation

$$
u_{t}=u_{x} u_{x x}-2 k u u_{x x}+\frac{3}{4} k u_{x}^{2}-k^{2} u u_{x}+\frac{5}{4} k^{3} u^{2} .
$$

(7) Let $L=\left(0, k,-k, \frac{1}{2} k,-\frac{1}{2} k\right), \quad F\left(\partial_{x}\right)=0$, then $A=\left(0, k, \frac{1}{2} k\right), B=\left(0,-k,-\frac{1}{2} k\right)$, or $A=B=\left(0, \frac{1}{2} k,-\frac{1}{2} k\right)$; therefore $\Phi_{L} u=\partial_{x}\left(\partial_{x}^{2}-k^{2}\right)\left(\partial_{x}^{2}-\frac{1}{4} k^{2}\right) u$ is a GCS of the equation

$$
u_{t}=\left[\left(\partial_{x}+k\right)\left(\partial_{x}+\frac{1}{2} k\right) u\right]\left[\left(\partial_{x}-k\right)\left(\partial_{x}-\frac{1}{2} k\right) u\right]-\left[\left(\partial_{x}+k\right)\left(\partial_{x}-k\right) u\right]^{2}
$$

which is equation (3).
(8) Let $L=\left(0, k_{1},-k_{1}, k_{2},-k_{2}\right), \quad F\left(\partial_{x}\right)=0$, then $A=\left(0, k_{1}\right), B=\left(0,-k_{1}\right)$, or $A=\left(0, k_{2}\right), B=\left(0,-k_{2}\right)$; therefore we know that $\Phi_{L} u=\partial_{x}\left(\partial_{x}^{2}-k_{1}^{2}\right)\left(\partial_{x}^{2}-k_{2}^{2}\right) u$ is a GCS of the following two equations:

$$
\begin{aligned}
& u_{t}=2 u_{x} u_{x x x}-u_{x x}^{2}-\left(k_{1}^{2}+k_{2}^{2}\right) u_{x}^{2}+k_{1}^{2} k_{2}^{2} u^{2} \\
& u_{t}=u_{x x x}^{2}-\left(k_{1}^{2}+k_{2}^{2}\right) u_{x x}^{2}+k_{1}^{2} k_{2}^{2}\left(2 u u_{x x}-u_{x}^{2}\right) .
\end{aligned}
$$

(9) As a generalization of the last example, we have the following equation:

$$
\begin{equation*}
u_{t}=A u \sum_{k=0}^{n} a_{k} \partial_{x}^{2 k} u+B \sum_{k=0}^{n} a_{k} \sum_{l=0}^{2 k}(-1)^{l}\left(\partial_{x}^{l} u\right)\left(\partial_{x}^{2 k-l} u\right) \tag{5}
\end{equation*}
$$

where A and B are arbitrary constants, which admits the solution

$$
\begin{equation*}
u=\sum_{i=1}^{n}\left(g_{2 i-1}(t) \mathrm{e}^{k_{i} x}+g_{2 i}(t) \mathrm{e}^{-k_{i} x}\right)+g_{2 n+1}(t) \tag{6}
\end{equation*}
$$

with $k_{i}^{2}(1 \leqslant i \leqslant n)$ the roots of the polynomial $\sum_{0}^{n} a_{k} x^{k}$, and $g_{i}(t)(1 \leqslant i \leqslant 2 n+1)$ satisfy the following system of equations:

$$
\begin{align*}
& \partial_{t} g_{2 i-1}=A a_{0} g_{2 i-1} g_{2 n+1} \quad \partial_{t} g_{2 i}=A a_{0} g_{2 i} g_{2 n+1} \quad(1 \leqslant i \leqslant n) \\
& \partial_{t} g_{2 n+1}=(A+B) a_{0} g_{2 n+1}^{2}+2 B \sum_{i=1}^{n}\left[\sum_{k=0}^{n} a_{k}(2 k+1) k_{i}^{2 k}\right] g_{2 i-1} g_{i} . \tag{7}
\end{align*}
$$

This solution corresponds to the linear GCS $\sigma=\sum_{0}^{n} a_{k} \partial_{x}^{2 k+1} u$.
Nonlinear equations with quadratic nonlinearity may admit exact solutions associated with nonlinear GCSs. Although these solutions may not correspond to invariant subspaces, our approach may still be useful in these cases. One such example is the equations admitting the following solution:

$$
\begin{equation*}
u=g_{1}(t) \mathrm{e}^{k_{1} x}+g_{2}(t) \mathrm{e}^{k_{2} x}+g_{3}(t) \mathrm{e}^{\frac{1}{2}\left(k_{1}+k_{2}\right) x}+g_{4}(t) \tag{8}
\end{equation*}
$$

Consider
$V=\left\{\mathrm{e}^{k_{1} x}, \mathrm{e}^{k_{2} x}, \mathrm{e}^{\frac{1}{2}\left(k_{1}+k_{2}\right) x}, 1\right\}=\left\{u: \partial_{x}\left(\partial_{x}-k_{1}\right)\left(\partial_{x}-k_{2}\right)\left(\partial_{x}-\frac{1}{2}\left(k_{1}+k_{2}\right)\right) u=0\right\}$.
Since

$$
\left(\partial_{x}-k_{1}\right)\left(\partial_{x}-\frac{1}{2}\left(k_{1}+k_{2}\right)\right) u \in\left\{\mathrm{e}^{k_{2} x}, 1\right\} \quad\left(\partial_{x}-k_{2}\right)\left(\partial_{x}-\frac{1}{2}\left(k_{1}+k_{2}\right)\right) u \in\left\{\mathrm{e}^{k_{1} x}, 1\right\}
$$

we know that

$$
K=\left[\left(\partial_{x}-k_{1}\right)\left(\partial_{x}-\frac{1}{2}\left(k_{1}+k_{2}\right)\right) u\right]\left[\left(\partial_{x}-k_{2}\right)\left(\partial_{x}-\frac{1}{2}\left(k_{1}+k_{2}\right)\right) u\right] \in \tilde{V}
$$

where

$$
\tilde{V}=\left\{\mathrm{e}^{k_{1} x}, \mathrm{e}^{k_{2} x}, \mathrm{e}^{\left(k_{1}+k_{2}\right) x}, \mathrm{e}^{\frac{1}{2}\left(k_{1}+k_{2}\right) x}, 1\right\} .
$$

Since

$$
\left(\partial_{x}-k_{1}\right)\left(\partial_{x}-k_{2}\right) u \in\left\{\mathrm{e}^{\frac{1}{2}\left(k_{1}+k_{2}\right) x}, 1\right\}
$$

we know that

$$
K=\left[\left(\partial_{x}-k_{1}\right)\left(\partial_{x}-k_{2}\right) u\right]^{2} \in \tilde{V} .
$$

The combination of these two K yields

$$
K=u_{x x}^{2}-2\left(k_{1}+k_{2}\right) u_{x} u_{x x}+\left(k_{1}^{2}+3 k_{1} k_{2}+k_{2}^{2}\right) u_{x}^{2}-k_{1} k_{2}\left(k_{1}+k_{2}\right) u u_{x}
$$

which also belongs to \tilde{V}. In general, $K[u]$ with u given in (8) may not belong to V. But when the g_{i} satisfy a certain condition, it is possible that $K[u] \in V$. In such case, u becomes a solution of $u_{t}=K$. We can find such a condition directly as follows. For u given in (8),

$$
\begin{gathered}
K[u]=-k_{1}^{2} k_{2}\left(k_{1}+k_{2}\right) g_{1} g_{4} \mathrm{e}^{k_{1} x}-k_{1} k_{2}^{2}\left(k_{1}+k_{2}\right) g_{2} g_{4} \mathrm{e}^{k_{2} x}-\frac{1}{2} k_{1} k_{2}\left(k_{1}+k_{2}\right)^{2} g_{3} g_{4} \mathrm{e}^{\frac{1}{2}\left(k_{1}+k_{2}\right) x} \\
+\left(k_{1}-k_{2}\right)^{2}\left[\frac{1}{16}\left(k_{1}+k_{2}\right)^{2} g_{3}^{2}-k_{1} k_{2} g_{1} g_{2}\right] \mathrm{e}^{\left(k_{1}+k_{2}\right) x} .
\end{gathered}
$$

Therefore if $\left(k_{1}+k_{2}\right)^{2} g_{3}^{2}=16 k_{1} k_{2} g_{1} g_{2}$, then (8) is a solution of $u_{t}=K[u]$. The system of equations that the g_{i} have to satisfy is

$$
\begin{array}{lc}
g_{1}^{\prime}=-k_{1}^{2} k_{2}\left(k_{1}+k_{2}\right) g_{1} g_{4} & g_{2}^{\prime}=-k_{1} k_{2}^{2}\left(k_{1}+k_{2}\right) g_{2} g_{4} \\
g_{3}^{\prime}=-\frac{1}{2} k_{1} k_{2}\left(k_{1}+k_{2}\right)^{2} g_{3} g_{4} & g_{4}^{\prime}=0 .
\end{array}
$$

Solving this system, we find the solution
$u=1+\mathrm{e}^{k_{1} z+A_{1}}+\mathrm{e}^{k_{2} z+A_{2}}+\frac{4 \sqrt{k_{1} k_{2}}}{k_{1}+k_{2}} \mathrm{e}^{\frac{1}{2}\left(k_{1}+k_{2}\right) z+\frac{1}{2}\left(A_{1}+A_{2}\right)} \quad z=x-\left(k_{1}+k_{2}\right) k_{1} k_{2} t$
of the equation

$$
\begin{equation*}
u_{t}=u_{x x}^{2}-2\left(k_{1}+k_{2}\right) u_{x} u_{x x}+\left(k_{1}^{2}+3 k_{1} k_{2}+k_{2}^{2}\right) u_{x}^{2}-k_{1} k_{2}\left(k_{1}+k_{2}\right) u u_{x} . \tag{9}
\end{equation*}
$$

We also notice that for u given in (8), $K[u]$ in general contains the term $\mathrm{e}^{\frac{1}{2}\left(k_{1}+k_{2}\right) x}$, therefore $K[u]$ is not an invariant subspace for the u given in (8). Therefore Galaktionov's approach does not work here, nor does this solution correspond to linear GCS. However, actually this solution corresponds to a quadratic GCS. This is because this solution satisfies a linear equation $u_{t}=-k_{1} k_{2}\left(k_{1}+k_{2}\right) u_{x}$. From this relation and equation (9), we know that this solution corresponds to the quadratic GCS:
$\sigma=u_{x x}^{2}-2\left(k_{1}+k_{2}\right) u_{x} u_{x x}+\left(k_{1}^{2}+3 k_{1} k_{2}+k_{2}^{2}\right) u_{x}^{2}-k_{1} k_{2}\left(k_{1}+k_{2}\right) u u_{x}+k_{1} k_{2}\left(k_{1}+k_{2}\right) u_{x}$.
Similar to the case of bilinear equations [5], exact solutions of equations with quadratic nonlinearity can also be sought directly. We consider the equation

$$
\begin{equation*}
\sum_{i, j} \gamma_{i j} \partial_{x}^{i} \partial_{t}^{j} u=\sum_{i, j} \alpha_{i j}\left(\partial_{x}^{i} u\right)\left(\partial_{x}^{j} u\right) \tag{10}
\end{equation*}
$$

Without loss of generality, we assume that $\alpha_{i j}=\alpha_{j i}$.
Introducing

$$
\begin{equation*}
F(x, y)=\sum_{i, j} \gamma_{i j} x^{i} y^{j} \quad P(x, y)=\sum_{i, j} \alpha_{i j} x^{i} y^{j} \tag{11}
\end{equation*}
$$

then equation (10) can be written as

$$
\begin{equation*}
F\left(\partial_{x}, \partial_{t}\right) u(x, t)=\left.P\left(\partial_{x}, \partial_{x^{\prime}}\right) u(x, t) u\left(x^{\prime}, t\right)\right|_{x^{\prime}=x} \tag{12}
\end{equation*}
$$

We search for solutions in the following form:

$$
\begin{equation*}
u(x, t)=\sum_{p} g_{p}(t) \mathrm{e}^{k_{p} x} \tag{13}
\end{equation*}
$$

Substituting this into equation (10), we obtain

$$
\begin{equation*}
\sum_{p}\left[\sum_{i, j} \gamma_{i j} k_{p}^{i} g_{q}^{(j)}(t)\right] \mathrm{e}^{k_{p} x}=\sum_{p, q}\left[\sum_{i, j} \alpha_{i j} k_{p}^{i} k_{q}^{j} g_{p}(t) g_{q}(t)\right] \mathrm{e}^{\left(k_{p}+k_{q}\right) x} \tag{14}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\sum_{p} F\left(k_{p}, \partial_{t}\right) g_{p}(t) \mathrm{e}^{k_{p} x}=\sum_{p, q} P\left(k_{p}, k_{q}\right) g_{p}(t) g_{q}(t) \mathrm{e}^{\left(k_{p}+k_{q}\right) x} . \tag{15}
\end{equation*}
$$

One necessary condition for equation (15) to be valid is that for any p, q, either $P\left(k_{p}, k_{q}\right)=0$ or $k_{p}+k_{q}=k_{r}$ or $k_{p}+k_{q}=k_{r}+k_{s}$ for some r, s.

Now we consider some special forms of (13). Firstly we search for solutions of equation (10) in the form of (8). Equating all coefficients in (15), we know that P satisfies

$$
\begin{equation*}
P\left(k_{1}, k_{1}\right)=P\left(k_{2}, k_{2}\right)=P\left(k_{1}, \frac{1}{2}\left(k_{1}+k_{2}\right)\right)=P\left(k_{2}, \frac{1}{2}\left(k_{1}+k_{2}\right)\right)=0 \tag{16}
\end{equation*}
$$

$g_{1}(t), g_{2}(t), g_{3}(t), g_{4}(t)$ satisfy the following system of equations:
$F\left(k, \partial_{t}\right) g_{1}=2 P\left(k_{1}, 0\right) g_{1} g_{4} \quad F\left(k_{2}, \partial_{t}\right) g_{2}=2 P\left(k_{2}, 0\right) g_{2} g_{4}$
$F\left(\frac{1}{2}\left(k_{1}+k_{2}\right), \partial_{t}\right) g_{3}=2 P\left(\frac{1}{2}\left(k_{1}+k_{2}\right), 0\right) g_{3} g_{4} \quad F\left(0, \partial_{t}\right) g_{4}=P(0,0) g_{4}^{2}$
and $g_{1}(t), g_{2}(t), g_{3}(t)$ also hold the following algebraic relation:

$$
\begin{equation*}
2 P\left(k_{1}, k_{2}\right) g_{1} g_{2}+P\left(\frac{1}{2}\left(k_{1}+k_{2}\right), \frac{1}{2}\left(k_{1}+k_{2}\right)\right) g_{3}^{2}=0 \tag{18}
\end{equation*}
$$

If $F(x, y)=y$, then equations (17) become

$$
\begin{align*}
& g_{1}^{\prime}=2 P\left(k_{1}, 0\right) g_{1} g_{4} \quad g_{2}^{\prime}=2 P\left(k_{2}, 0\right) g_{2} g_{4} \tag{19}\\
& g_{3}^{\prime}=2 P\left(\frac{1}{2}\left(k_{1}+k_{2}\right), 0\right) g_{3} g_{4} \quad g_{4}^{\prime}=P(0,0) g_{4}^{2}
\end{align*}
$$

Equations (18) and (19) imply that $P\left(k_{1}, 0\right)+P\left(k_{2}, 0\right)=2 P\left(\frac{1}{2}\left(k_{1}+k_{2}\right), 0\right)$. Therefore we know that if P satisfies

$$
\begin{align*}
& P\left(k_{1}, k_{1}\right)=P\left(k_{2}, k_{2}\right)=P\left(k_{1}, \frac{1}{2}\left(k_{1}+k_{2}\right)\right)=P\left(k_{2}, \frac{1}{2}\left(k_{1}+k_{2}\right)\right)=0 \tag{20}\\
& P\left(k_{1}, 0\right)+P\left(k_{2}, 0\right)=2 P\left(\frac{1}{2}\left(k_{1}+k_{2}\right), 0\right)
\end{align*}
$$

then equation

$$
\begin{equation*}
u_{t}=\sum_{i, j} \alpha_{i j}\left(\partial_{x}^{i} u\right)\left(\partial_{x}^{j} u\right) \tag{21}
\end{equation*}
$$

admits the following solutions:

$$
\begin{aligned}
u=-\frac{1}{P(0,0) t} & +t^{-\frac{2 P\left(k_{1}, 0\right)}{P(0,0)}} \mathrm{e}^{k_{1} x+A_{1}}+t^{-\frac{2 P\left(k_{2}, 0\right)}{P(0,0)}} \mathrm{e}^{k_{2} x+A_{2}} \\
& +\left[-\frac{2 P\left(k_{1}, k_{2}\right)}{P\left(\frac{1}{2}\left(k_{1}+k_{2}\right), \frac{1}{2}\left(k_{1}+k_{2}\right)\right)}\right]^{\frac{1}{2}} t^{-\frac{P\left(k_{1}, 0\right)+P\left(k_{2}, 0\right)}{P(0,0)}} \mathrm{e}^{\frac{1}{2}\left(k_{1}+k_{2}\right) x+\frac{1}{2}\left(A_{1}+A_{2}\right)}
\end{aligned}
$$

if $P(0,0) \neq 0$, and
$u=1+\mathrm{e}^{k_{1} x+2 P\left(k_{1}, 0\right) t+A_{1}}+\mathrm{e}^{k_{2} x+2 P\left(k_{2}, 0\right) t+A_{2}}$

$$
+\left[-\frac{2 P\left(k_{1}, k_{2}\right)}{P\left(\frac{1}{2}\left(k_{1}+k_{2}\right), \frac{1}{2}\left(k_{1}+k_{2}\right)\right)}\right]^{\frac{1}{2}} \mathrm{e}^{\frac{1}{2}\left(k_{1}+k_{2}\right) x+\left(P\left(k_{1}, 0\right)+P\left(k_{2}, 0\right)\right) t+\frac{1}{2}\left(A_{1}+A_{2}\right)}
$$

if $P(0,0)=0$, where A_{1}, A_{2} are arbitrary constants.
It is easy to verify that

$$
P(x, y)=x^{2} y^{2}-\left(k_{1}+k_{2}\right) x y(x+y)+\left(k_{1}^{2}+3 k_{1} k_{2}+k_{2}^{2}\right) x y-\frac{1}{2} k_{1} k_{2}\left(k_{1}+k_{2}\right)(x+y)
$$

satisfies the conditions (20). The corresponding evolution equation is exactly equation (9), and we also recover its exact solution.

Similarly, the search for solutions in the form of

$$
u=g_{1}(t) \mathrm{e}^{k x}+g_{2}(t) \mathrm{e}^{-k x}+g_{3}(t) \mathrm{e}^{\frac{1}{3} k x}+g_{4}(t) \mathrm{e}^{-\frac{1}{3} k x}+g_{5}(t)
$$

reveals that equation

$$
u_{t}=u_{x x}^{2}+a u_{x}^{2}+\frac{3}{16} a^{2} u^{2}
$$

admits the solution
$u=g_{1}(t) \mathrm{e}^{k x}+g_{2}(t) \mathrm{e}^{-k x}+9 g_{1}^{2 / 3}(t) g_{2}^{1 / 3}(t) \mathrm{e}^{\frac{1}{3} k x}+9 g_{1}^{1 / 3}(t) g_{2}^{2 / 3}(t) \mathrm{e}^{-\frac{1}{3} k x}+g_{5}(t)$
$k=\sqrt{-\frac{3}{4} a} \quad g_{1}^{\prime}=\frac{3}{8} a^{2} g_{1} g_{5} \quad g_{2}^{\prime}=\frac{3}{8} a^{2} g_{2} g_{5} \quad g_{5}^{\prime}=\frac{3}{16} a^{2}\left(256 g_{1} g_{2}+g_{5}^{2}\right)$.
It is easy to verify that $V=\left\{\mathrm{e}^{k x}, \mathrm{e}^{-k x}, \mathrm{e}^{k x / 3}, \mathrm{e}^{-k x / 3}, 1\right\}$ is not an invariant subspace of $K[u]=u_{x x}^{2}+a u_{x}^{2}+\frac{3}{16} a^{2} u^{2}$. Therefore, once again, we obtain a solution that corresponds to nonlinear GCS.

In summary, this paper has provided a new constructive method (proposition 1) for systematically obtaining quadratic nonlinear evolution equations with exact solutions, based on the concepts of invariant subspaces and generalized conditional symmetries. Although some examples of such equations have been known for quite a while, our approach is much simpler and more efficient than the existing ones. Many equations admitting exact solutions are presented in this paper, which are as simple as the known equations while they have been unknown until now. The exact solutions derived based on proposition 1 correspond to invariant subspaces, as well as to the linear generalized conditional symmetries. We further showed, through examples, that the idea behinds proposition 1 could be useful to even find exact solutions that do not correspond to invariant subspaces. In general, such solutions should correspond to nonlinear generalized conditional symmetries. We also showed a direct approach to the search for such solutions. Both of these approaches are experimental and the conditions of the existence of such solutions deserve more investigation in future studies.

References

[1] Galaktionov V A 1990 On new exact blow-up solutions for nonlinear heat conduction equations with source and applications Diff. Integral Eqns 5 863-74
[2] Galaktionov V A 1995 Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities Proc. R. Soc. Edinburgh A 125 225-46
[3] Cherniha R M 1998 New-Lie ansätze and exact solutions of nonlinear reaction-diffusion-convection equations J. Phys. A: Math. Gen. 31 8179-98
[4] Fokas A S and Liu Q M 1994 Nonlinear interaction of traveling waves of nonintegrable equations Phys. Rev. Lett. 72 3293-6
[5] Liu Q M and Fokas A S 1996 Exact interaction of solitary waves for certain non-integrable equations J. Math. Phys. 37 324-45

