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Abstract
Based on the concepts of the generalized conditional symmetry and of the
invariant subspace, a constructive way to derive nonlinear equations with
quadratic nonlinearity that admit exact solutions as well as many new examples
is presented. This type of solution, found by Galaktionov, describes the blow-
up phenomena. Examples of exact solutions that do not correspond to the
invariant subspace are also presented and explained by the nonlinear generalized
conditional symmetries.

PACS numbers: 0545, 0545Y, 0230R

There exist equations with quadratic nonlinearity that admit exact solutions describing the
blow-up phenomena. The first one, found by Galaktionov [1], is the following:

ut = uxx + u2
x − k2u2 (1)

which admits the solution

u = g1(t)e
kx + g2(t)e

−kx + g3(t)

g′
1 = k2g1(1 − 2g3) g′

2 = k2g2(1 − 2g3) g′
3 = −k2(g2

3 + 4g1g2).
(2)

Other equations that admit similar exact solutions include [2, 3]

ut = uuxx − 3
4u

2
x − 1

4k
2u2 (3)

and

ut = uuxx − 2
3u

2
x + 1

6kuux − 1
6k

2u2. (4)

There are several ways to explain the existence of such exact solutions. One such way is
the concept of generalized condition symmetry (GCS) [4]. σ(u) is a GCS of the equation
ut = K(u), iff

K ′σ − σ ′K = F(u, σ ) F (u, 0) = 0

where F(u, σ ) is a differentiable function of u, ux, uxx, . . . and of σ, σx, σxx, . . . . For each
GCS σ(u), there is a solution of the equation ut = K(u) that also satisfies σ(u) = 0. It is easy
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to verify that σ = uxxx − k2ux is a GCS of equation (1), and (2) is the solution associated with
this GCS. Another way to explain such solutions is the concept of the invariant subspace [2].
A linear space V of differential functions is an invariant subspace of a nonlinear operator K if
K[V ] ⊆ V . If V is an invariant subspace of K , then there exists a u ∈ V such that K(u) = 0. It
is easy to see that V = {ekx, e−kx, 1} is an invariant subspace of K(u) = −ut +uxx +u2

x −k2u2.
The GCS σ = uxxx − k2ux of equation (1), as well as the GCSs of equations (3) and (4),

are all linear GCSs. In fact, there is a close relation between the linear GCS and the invariant
subspace.

Lemma 1. �u is a GCS of equation ut = K[u], iff V = {u : �u = 0} is an invariant subspace
of K[u].

Proof. (�u)′K[u]|�u=0 = �K[u]|�u=0 = �K[u]|u∈V .
In this paper, we present a constructive way to derive equations with quadratic nonlinearity

that admit exact solutions similar to (2).
For convenience, for a set of numbers L, we denote the operator �L = �l∈L(∂x − l).

Lemma 2. Suppose L is a set of numbers. If there exist A,B ⊆ L such that A + B ⊆ L, then
�Lu = 0 is an invariant subspace of F(∂x)u + (�L−Au)(�L−Bu), where F is a polynomial
with constant coefficients.

Proposition 1. Suppose L is a set of numbers. If there exist A,B ⊆ L such that A + B ⊆ L,
then �Lu is a GCS of the equation ut = F(∂x)u+ (�L−Au)(�L−Bu), where F is a polynomial
with constant coefficients.

In the following we show a few examples based on proposition 1.

(1) Let L = (0, k,−k), A = (0, k), B = (0,−k), F (∂x) = ∂2
x , then we know that

�Lu = ∂x(∂x − k)(∂x + k)u = uxxx − k2ux is a GCS of the equation

ut = uxx + [(∂x − k)u][(∂x + k)u]

which is the equation (1).
(2) Let L = (0, k1,−k1, k2), A = (0, k1), B = (0,−k1), F (∂x) = 0, then we know that

�Lu = uxxxx − k2uxxx − k2
1uxx + k2

1k2ux is a GCS of the equation

ut = u2
xx − 2k2uxuxx + (−k2

1 + k2
2)u

2
x + 2k2

1k2uux − k2
1k

2
2u

2.

The associated solution is

u = g1(t)e
k1x + g2(t)e

−k1x + g3(t)e
k2x + g4(t) g′

1 = 2k2
1k2(k1 − k2)g1g4

g′
2 = −2k2

1k2(k1 + k2)g2g4 g′
3 = 0 g′

4 = 4k2
1(k

2
1 − k2

2)g1g2 − k2
1k

2
2g

2
4 .

(3) Let L = (0, k1, k2, k1 + k2), A = (0, k1), B = (0, k2), F (∂x) = 0, then we know that
�Lu = ∂x(∂x − k1)(∂x − k2)(∂x − k1 − k2)u is a GCS of the equation

ut = [(∂x − k1)(∂x − k1 − k2)u][(∂x − k2)(∂x − k1 − k2)u].

(4) Let L = (0, k1, k2,
1
2k1), A = B = (0, 1

2k1), F (∂x) = 0, then we know that
�Lu = ∂x(∂x − k1)(∂x − k2)(∂x − 1

2k1)u is a GCS of the equation

ut = [(∂x − k1)(∂x − k2)u]2.

(5) Let L = (0, k, 1
2k,− 1

2k), F (∂x) = 0, then A = (0, k, 1
2k), B = (0,− 1

2k), or A =
(0, 1

2k,− 1
2k), B = (0, 1

2k); therefore we know that �Lu = ∂x(∂x −k)(∂x − 1
2k)(∂x + 1

2k)u

is a GCS of the equation

ut = [(∂x + 1
2k)u][(∂x − k)(∂x − 1

2k)u] − [(∂x − k)u][(∂x − k)(∂x + 1
2k)u]

which is equation (4).
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(6) Let L = (0, k,−k, 1
2k), F (∂x) = 0, then A = (0, k), B = (0,−k), or A = B = (0, 1

2k);
therefore we know that �Lu = ∂x(∂x − k)(∂x + k)(∂x − 1

2k)u is a GCS of the equation

ut = uxuxx − 2kuuxx + 3
4ku

2
x − k2uux + 5

4k
3u2.

(7) Let L = (0, k,−k, 1
2k,− 1

2k), F (∂x) = 0, then A = (0, k, 1
2k), B = (0,−k,− 1

2k),
or A = B = (0, 1

2k,− 1
2k); therefore �Lu = ∂x(∂

2
x − k2)(∂2

x − 1
4k

2)u is a GCS of the
equation

ut = [(∂x + k)(∂x + 1
2k)u][(∂x − k)(∂x − 1

2k)u] − [(∂x + k)(∂x − k)u]2

which is equation (3).
(8) Let L = (0, k1,−k1, k2,−k2), F (∂x) = 0, then A = (0, k1), B = (0,−k1), or

A = (0, k2), B = (0,−k2); therefore we know that �Lu = ∂x(∂
2
x − k2

1)(∂
2
x − k2

2)u

is a GCS of the following two equations:

ut = 2uxuxxx − u2
xx − (k2

1 + k2
2)u

2
x + k2

1k
2
2u

2

ut = u2
xxx − (k2

1 + k2
2)u

2
xx + k2

1k
2
2(2uuxx − u2

x).

(9) As a generalization of the last example, we have the following equation:

ut = Au

n∑
k=0

ak∂
2k
x u + B

n∑
k=0

ak

2k∑
l=0

(−1)l(∂l
xu)(∂

2k−l
x u) (5)

where A and B are arbitrary constants, which admits the solution

u =
n∑

i=1

(
g2i−1(t)e

kix + g2i (t)e
−kix

)
+ g2n+1(t) (6)

with k2
i (1 � i � n) the roots of the polynomial

∑n
0 akx

k , and gi(t) (1 � i � 2n + 1)
satisfy the following system of equations:

∂tg2i−1 = Aa0g2i−1g2n+1 ∂tg2i = Aa0g2ig2n+1 (1 � i � n)

∂tg2n+1 = (A + B)a0g
2
2n+1 + 2B

n∑
i=1

[ n∑
k=0

ak(2k + 1)k2k
i

]
g2i−1gi.

(7)

This solution corresponds to the linear GCS σ = ∑n
0 ak∂

2k+1
x u.

Nonlinear equations with quadratic nonlinearity may admit exact solutions associated
with nonlinear GCSs. Although these solutions may not correspond to invariant subspaces,
our approach may still be useful in these cases. One such example is the equations admitting
the following solution:

u = g1(t)e
k1x + g2(t)e

k2x + g3(t)e
1
2 (k1+k2)x + g4(t). (8)

Consider

V = {ek1x, ek2x, e
1
2 (k1+k2)x, 1} = {u : ∂x(∂x − k1)(∂x − k2)(∂x − 1

2 (k1 + k2))u = 0}.
Since

(∂x − k1)(∂x − 1
2 (k1 + k2))u ∈ {ek2x, 1} (∂x − k2)(∂x − 1

2 (k1 + k2))u ∈ {ek1x, 1}
we know that

K = [(∂x − k1)(∂x − 1
2 (k1 + k2))u][(∂x − k2)(∂x − 1

2 (k1 + k2))u] ∈ Ṽ

where

Ṽ = {ek1x, ek2x, e(k1+k2)x, e
1
2 (k1+k2)x, 1}.
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Since

(∂x − k1)(∂x − k2)u ∈ {e 1
2 (k1+k2)x, 1}

we know that

K = [(∂x − k1)(∂x − k2)u]2 ∈ Ṽ .

The combination of these two K yields

K = u2
xx − 2(k1 + k2)uxuxx + (k2

1 + 3k1k2 + k2
2)u

2
x − k1k2(k1 + k2)uux

which also belongs to Ṽ . In general, K[u] with u given in (8) may not belong to V . But when
the gi satisfy a certain condition, it is possible that K[u] ∈ V . In such case, u becomes a
solution of ut = K . We can find such a condition directly as follows. For u given in (8),

K[u] = −k2
1k2(k1 + k2)g1g4ek1x − k1k

2
2(k1 + k2)g2g4ek2x − 1

2k1k2(k1 + k2)
2g3g4e

1
2 (k1+k2)x

+(k1 − k2)
2
[

1
16 (k1 + k2)

2g2
3 − k1k2g1g2

]
e(k1+k2)x .

Therefore if (k1 + k2)
2g2

3 = 16k1k2g1g2, then (8) is a solution of ut = K[u]. The system of
equations that the gi have to satisfy is

g′
1 = −k2

1k2(k1 + k2)g1g4 g′
2 = −k1k

2
2(k1 + k2)g2g4

g′
3 = − 1

2k1k2(k1 + k2)
2g3g4 g′

4 = 0.

Solving this system, we find the solution

u = 1 + ek1z+A1 + ek2z+A2 +
4
√

k1k2

k1 + k2
e

1
2 (k1+k2)z+ 1

2 (A1+A2) z = x − (k1 + k2)k1k2t

of the equation

ut = u2
xx − 2(k1 + k2)uxuxx + (k2

1 + 3k1k2 + k2
2)u

2
x − k1k2(k1 + k2)uux. (9)

We also notice that for u given in (8), K[u] in general contains the term e
1
2 (k1+k2)x , therefore

K[u] is not an invariant subspace for the u given in (8). Therefore Galaktionov’s approach
does not work here, nor does this solution correspond to linear GCS. However, actually this
solution corresponds to a quadratic GCS. This is because this solution satisfies a linear equation
ut = −k1k2(k1 + k2)ux . From this relation and equation (9), we know that this solution
corresponds to the quadratic GCS:

σ = u2
xx − 2(k1 + k2)uxuxx + (k2

1 + 3k1k2 + k2
2)u

2
x − k1k2(k1 + k2)uux + k1k2(k1 + k2)ux.

Similar to the case of bilinear equations [5], exact solutions of equations with quadratic
nonlinearity can also be sought directly. We consider the equation∑

i,j

γij ∂
i
x∂

j
t u =

∑
i,j

αij (∂
i
xu)(∂

j
x u). (10)

Without loss of generality, we assume that αij = αji .
Introducing

F(x, y) =
∑
i,j

γij x
iyj P (x, y) =

∑
i,j

αij x
iyj (11)

then equation (10) can be written as

F(∂x, ∂t )u(x, t) = P(∂x, ∂x ′)u(x, t)u(x ′, t)|x ′=x. (12)

We search for solutions in the following form:

u(x, t) =
∑
p

gp(t)e
kpx . (13)
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Substituting this into equation (10), we obtain∑
p

[ ∑
i,j

γij k
i
pg

(j)
q (t)

]
ekpx =

∑
p,q

[ ∑
i,j

αij k
i
pk

j
qgp(t)gq(t)

]
e(kp+kq )x (14)

i.e. ∑
p

F (kp, ∂t )gp(t)e
kpx =

∑
p,q

P (kp, kq)gp(t)gq(t)e
(kp+kq )x . (15)

One necessary condition for equation (15) to be valid is that for any p, q, either P(kp, kq) = 0
or kp + kq = kr or kp + kq = kr + ks for some r, s.

Now we consider some special forms of (13). Firstly we search for solutions of
equation (10) in the form of (8). Equating all coefficients in (15), we know that P satisfies

P(k1, k1) = P(k2, k2) = P(k1,
1
2 (k1 + k2)) = P(k2,

1
2 (k1 + k2)) = 0. (16)

g1(t), g2(t), g3(t), g4(t) satisfy the following system of equations:

F(k, ∂t )g1 = 2P(k1, 0)g1g4 F(k2, ∂t )g2 = 2P(k2, 0)g2g4

F( 1
2 (k1 + k2), ∂t )g3 = 2P( 1

2 (k1 + k2), 0)g3g4 F(0, ∂t )g4 = P(0, 0)g2
4

(17)

and g1(t), g2(t), g3(t) also hold the following algebraic relation:

2P(k1, k2)g1g2 + P( 1
2 (k1 + k2),

1
2 (k1 + k2))g

2
3 = 0. (18)

If F(x, y) = y, then equations (17) become

g′
1 = 2P(k1, 0)g1g4 g′

2 = 2P(k2, 0)g2g4

g′
3 = 2P( 1

2 (k1 + k2), 0)g3g4 g′
4 = P(0, 0)g2

4 .
(19)

Equations (18) and (19) imply that P(k1, 0) + P(k2, 0) = 2P( 1
2 (k1 + k2), 0). Therefore we

know that if P satisfies

P(k1, k1) = P(k2, k2) = P(k1,
1
2 (k1 + k2)) = P(k2,

1
2 (k1 + k2)) = 0

P(k1, 0) + P(k2, 0) = 2P( 1
2 (k1 + k2), 0)

(20)

then equation

ut =
∑
i,j

αij (∂
i
xu)(∂

j
x u) (21)

admits the following solutions:

u = − 1

P(0, 0)t
+ t

− 2P(k1 ,0)
P (0,0) ek1x+A1 + t

− 2P(k2 ,0)
P (0,0) ek2x+A2

+

[
− 2P(k1, k2)

P ( 1
2 (k1 + k2),

1
2 (k1 + k2))

]1
2

t
− P(k1 ,0)+P(k2 ,0)

P (0,0) e
1
2 (k1+k2)x+ 1

2 (A1+A2)

if P(0, 0) �= 0, and

u = 1 + ek1x+2P(k1,0)t+A1 + ek2x+2P(k2,0)t+A2

+

[
− 2P(k1, k2)

P ( 1
2 (k1 + k2),

1
2 (k1 + k2))

]1
2

e
1
2 (k1+k2)x+(P (k1,0)+P(k2,0))t+ 1

2 (A1+A2)

if P(0, 0) = 0, where A1, A2 are arbitrary constants.
It is easy to verify that

P(x, y) = x2y2 − (k1 + k2)xy(x + y) + (k2
1 + 3k1k2 + k2

2)xy − 1
2k1k2(k1 + k2)(x + y)
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satisfies the conditions (20). The corresponding evolution equation is exactly equation (9),
and we also recover its exact solution.

Similarly, the search for solutions in the form of

u = g1(t)e
kx + g2(t)e

−kx + g3(t)e
1
3 kx + g4(t)e

− 1
3 kx + g5(t)

reveals that equation

ut = u2
xx + au2

x + 3
16a

2u2

admits the solution

u = g1(t)e
kx + g2(t)e

−kx + 9g2/3
1 (t)g

1/3
2 (t)e

1
3 kx + 9g1/3

1 (t)g
2/3
2 (t)e− 1

3 kx + g5(t)

k =
√

− 3
4a g′

1 = 3
8a

2g1g5 g′
2 = 3

8a
2g2g5 g′

5 = 3
16a

2(256g1g2 + g2
5).

It is easy to verify that V = {ekx, e−kx, ekx/3, e−kx/3, 1} is not an invariant subspace of
K[u] = u2

xx + au2
x + 3

16a
2u2. Therefore, once again, we obtain a solution that corresponds to

nonlinear GCS.
In summary, this paper has provided a new constructive method (proposition 1) for

systematically obtaining quadratic nonlinear evolution equations with exact solutions, based
on the concepts of invariant subspaces and generalized conditional symmetries. Although
some examples of such equations have been known for quite a while, our approach is much
simpler and more efficient than the existing ones. Many equations admitting exact solutions
are presented in this paper, which are as simple as the known equations while they have
been unknown until now. The exact solutions derived based on proposition 1 correspond to
invariant subspaces, as well as to the linear generalized conditional symmetries. We further
showed, through examples, that the idea behinds proposition 1 could be useful to even find
exact solutions that do not correspond to invariant subspaces. In general, such solutions should
correspond to nonlinear generalized conditional symmetries. We also showed a direct approach
to the search for such solutions. Both of these approaches are experimental and the conditions
of the existence of such solutions deserve more investigation in future studies.
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